Deterministic: No randomness involved - concept of probability N/A

Sample Space: Set of possible outcomes of a random experiment; denoted $S$

Uniform Probability Model: Each event in $S$ is equally likely

Permutations: Arrangements of sequences $~_nP_k = n^{(k)}$

Sterling's Approximation: Approximates $n!≈(\frac{n}{e})^n\sqrt{2πn}$

Combinations: Arrangements, order is arbitrary (i.e. "sort then remove dupes")

Random Variables: Function from sample space → ℝ (e.g. $X=\text{the number of heads when a coin is flipped thrice}$)

1 & 2

3

3.2

3.3

Binomial Distribution: Two outcomes: "success" or "failure".

$f(x)=P(X=x)={n\choose x}p^x(1-p)^{n-x}\text{ for }x=0, 1, 2, \ldots, n$

Hypergeometric Distribution: Binomial without replacement

$f(x)=P(X=x)={r \choose x}{N-r \choose n-x}\div{N \choose n}$

Negative Binomial Distribution: Binomial, except we keep doing the experiment until we get $k$ successes

$f(x)=P(X=x)={x+k-1\choose x}p^k(1-p)^x\text{ for }x=0, 1, 2, \ldots,$

Geometric Distribution: Negative Binomial with $k=1$ success

$f(x)=P(X=x)=p(1-p)^x\text{ for }x=0, 1, 2, \ldots,$

Poisson Distribution from Binomial: Binomial as $n→∞, p→0$

$f(x)=μ^xe^{-p}\div x! \text{ for } x =0, 1, 2, \ldots$

Poisson Distribution from Poisson Process: Events that occur at points in time or space

$f_t(x)=\frac{μ^xe^{-μ}}{x!}\text{ for }x=0,1,2,\ldots$