Compounding Interest: $FV=PV_0×(1+\frac{i}{m})^{n×m}$
Effective Interest Rate: $EIR=(1+\frac{i}{m})^m-1$
Future Value Interest Factor for an Annuity: $FVIFA_{i,n}=\frac{(1+i)^n-1}{i}$
FV Ordinary Annuity: $FV_{annuity}=PMT×FVIFA_{i,n}$
FV Annuity Due: $FV_{annuity\due}=PMT×FVIFA{i,n}×(i+1)$
Present Value Interest Factor for an Annuity: $PVIFA_{i,n}=\frac{1-\frac{1}{(1+i)^n}}{i}$
PV Ordinary Annuity: $PV_{annuity}=PMT×PVIFA_{i,n}$
PV Annuity Due: $PV_{annuity\due}=PMT×PVIFA{i,n}×(1+i)$
Perpetuity: $PV_{perpetuity}=\frac{PMT}{i}$
Balloon Loan: $Balloon_n=FV_n=Principal_0×(1+i)^n$
Amortized Loan: $Principal=PMT×PVIFA_{i,n}$
Fisher Equation: $1+k_n=(1+k_r)×(1+π)$
kn = nominal rate
, kr = real rate
, π = expected inflation rate
n = number of periods
m = compounding periods per year
i = annual interest rate